Codon-optimized fluorescent proteins designed for expression in low-GC gram-positive bacteria.

نویسندگان

  • Inka Sastalla
  • Kannie Chim
  • Gordon Y C Cheung
  • Andrei P Pomerantsev
  • Stephen H Leppla
چکیده

Fluorescent proteins have wide applications in biology. However, not all of these proteins are properly expressed in bacteria, especially if the codon usage and genomic GC content of the host organism are not ideal for high expression. In this study, we analyzed the DNA sequences of multiple fluorescent protein genes with respect to codons and GC content and compared them to a low-GC gram-positive bacterium, Bacillus anthracis. We found high discrepancies for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and the photoactivatable green fluorescent protein (PAGFP), but not GFP, with regard to GC content and codon usage. Concomitantly, when the proteins were expressed in B. anthracis, CFP- and YFP-derived fluorescence was undetectable microscopically, a phenomenon caused not by lack of gene transcription or degradation of the proteins but by lack of protein expression. To improve expression in bacteria with low genomic GC contents, we synthesized a codon-optimized gfp and constructed optimized photoactivatable pagfp, cfp, and yfp, which were in contrast to nonoptimized genes highly expressed in B. anthracis and in another low-GC gram-positive bacterium, Staphylococcus aureus. Using optimized GFP as a reporter, we were able to monitor the activity of the protective antigen promoter of B. anthracis and confirm its dependence on bicarbonate and regulators present on virulence plasmid pXO1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of mCherry Red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile.

Fluorescent proteins are powerful reporters in biology, but most require O2 for chromophore maturation, making them inherently difficult to use in anaerobic bacteria. Clostridium difficile, a strict anaerobe with a genomic GC content of only 29%, is the leading cause of hospital-acquired diarrhea in developed countries, and new methods for studying this pathogen are sorely needed. We recently d...

متن کامل

Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method.

During the last decades, a wide range of fluorescent proteins (FPs) have been developed and improved. This has had a great impact on the possibilities in biological imaging and the investigation of cellular processes at the single-cell level. Recently, we have benchmarked a set of green fluorescent proteins (GFPs) and generated a codon-optimized superfolder GFP for efficient use in the importan...

متن کامل

Benchmarking various green fluorescent protein variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for live cell imaging.

Green fluorescent protein (GFP) offers efficient ways of visualizing promoter activity and protein localization in vivo, and many different variants are currently available to study bacterial cell biology. Which of these variants is best suited for a certain bacterial strain, goal, or experimental condition is not clear. Here, we have designed and constructed two "superfolder" GFPs with codon a...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Optimization of Fluorescent Tools for Cell Biology Studies in Gram-Positive Bacteria

The understanding of how Gram-positive bacteria divide and ensure the correct localization of different molecular machineries, such as those involved in the synthesis of the bacterial cell surface, is crucial to design strategies to fight bacterial infections. In order to determine the correct subcellular localization of fluorescent proteins in Streptococcus pneumoniae, we have previously descr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 7  شماره 

صفحات  -

تاریخ انتشار 2009